Ctrl + F is the shortcut in your browser or operating system that allows you to find words or questions quickly.
Ctrl + Tab to move to the next tab to the right and Ctrl + Shift + Tab to move to the next tab to the left.
On a phone or tablet, tap the menu icon in the upper-right corner of the window; Select "Find in Page" to search a question.
Share UsSharing is Caring
It's the biggest motivation to help us to make the site better by sharing this to your friends or classmates.
Is an advanced level math course that prepares students for college-level calculus and covers topics such as functions, trigonometry, and complex numbers.
A satellite dish in the shape of a paraboloid is 10 ft across, and 4 ft deep at its vertex. How far is the receiver from the vertex, if it is placed at the focus? Round off your answer to 2 decimal places.
A type of Conic where the plane is horizontal.
Convert the polar equation to rectangular form. r = 4
Use any method to solve the system.
Find a formula for the sum of the first n terms of the sequence.
Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. ( 3 sin^2 x - sin x - 1 = 0 )
Solve the system by the method of substitution. Check your solution graphically.
A type of Conic where the plane intersects only on one cone to form an anbounded curve.
Plot the point given in polar coordinates and find two additional polar representations of the point, using -2π < θ < 2π.
Find the center point of the following circle x2 + y2 + 8x + 4y - 3 = 40.
The ______ is the point midway between the focus and the directrix.
Solve the equation for exact solutions over the interval [0, 2π]. cos2x=−12
Find the standard form of the equation of the parabola with the given characteristics: Focus: (2, 2); directrix: x = -2
Write the expression as the sine, cosine, or tangent of an angle. cos 25° cos 15° - sin 25° sin 15°
Expand the expression in the difference quotient and simplify.
Solve the equation for exact solutions over the interval [0, 2π]. 23–√sin2x=3–√
Give all exact solutions over the interval [0°, 360°].
Write the expression as the sine, cosine, or tangent of an angle. tan2x+tanx1−tan2xtanx
The orbit of a planet around a star is described by the equation where the star is at one focus, and all units are in millions of kilometers. The planet is closest and farthest from the star, when it is at the vertices. How far is the planet when it is closest to the sun? How far is the planet when it is farthest from the sun?
Convert the polar equation to rectangular form.
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 4x2+16y2−4x−32y+1=0
Convert the angle in radians to degrees. 5π/ 4
Classify the angle as acute, right, obtuse, or straight: 2π/3
Find the standard equation of the hyperbola which satisfies the given conditions:
Solve the equation for exact solutions over the interval [0, 2π]. (sinfrac{x}{2} = sqrt{2} - sinfrac{x}{2})
Convert the rectangular equation to polar form. Assume a > 0. x2 + y2 - 2ax = 0
In order to graph a circle one must graph all the points that are equidistant from:
What are the coordinates of the figure below:a
Convert π/18 to Degrees.
Second differences:
Find Pk+1 for the given Pk.
Solve the equation for exact solutions over the interval [0, 2π]. cos 2x = 3√2
What are the coordinates of the given figure below:a
A big room is constructed so that the ceiling is a dome that is semielliptical in shape. If a person stands at one focus and speaks, the sound that is made bounces off the ceiling and gets reflected to the other focus. Thus, if two people stand at the foci (ignoring their heights), they will be able to hear each other. If the room is 34 m long and 8 m high, how far from the center should each of two people stand if they would like to whisper back and forth and hear each other?
Find the exact value of the trigonometric function given that sinu=513
Which answer choice shows the center of the circle with the equation x2 + y2 -8x +14y +57.
Determine the vertex of the parabola with the equation x2 - 6x + 5y = -34. Enclose your answers in parentheses.
Convert the angle in degrees to radians. Express answer as a multiple of π. 144°
Find the standard form of the equation of the ellipse with the given characteristics: Foci: (0, 0), (0, 8); major axis of length 16
Convert 2π into degrees.
Where is the center of the circle? (x-h)2+(y-k)2=r
Use the Binomial Theorem to expand and simplify the expression. (3a - 4b)5
Find the sum.
Solve the system by the method of substitution:
Find the standard form of the equation of the ellipse with the given characteristics:
Find the radian measure of the central angle of a circle of radius r that intercepts an arc of length s.
Use the Binomial Theorem to expand and simplify the expression. (x + 1)4
Solve each equation for exact solutions over the interval [00, 3600]. 2sinθ−1=cscθ
Convert the rectangular equation to polar form. Assume a > 0. y = 4
Find the standard form of the equation of the parabola with the given characteristics:
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large 100x^2 + 100y^2 - 100x + 400y + 409 =0 )
Find the equation in standard form of the ellipse whose foci are F1 (-8,0) and F2 (8,0), such that for any point on it, the sum of its distances from the foci is 20.
What are the coordinates of the center of the circle given by the equation x2+y2-16x-8y+31=0?
A ___________ has a shape of paraboloid, where each cross section is a parabola.
Solve the equation for exact solutions over the interval [0, 2π]. (sin 3x = -1)
Convert the rectangular equation to polar form. Assume a > 0. y2 - 8x - 16 = 0
Solve the system by the method of elimination and check any solutions algebraically:
Expand the binomial by using Pascal’s Triangle to determine the coefficients.
A circle can be centered anywhere in the coordinate plane.
What Quadrant does 144° belongs to?
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large y^2 -4x^2 +4x -2y -4 =0)
Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. ( 4 cos^2x - 1 = 0)
Solve the system by the method of elimination and check any solutions algebraically. 0.05x – 0.03y = 0.21 0.07x + 0.02y = 0.16
Expand the binomial by using Pascal's Triangle to determine the coefficients. (2t - s)5
Convert the polar equation to rectangular form. ( r = 2 sin 3 theta )
Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. 3sin2x−sinx−1=0
An airplane flying into a headwind travels the 1800-mile flying distance between Pittsburgh, Pennsylvania and Phoenix, Arizona in 3 hours and 36 minutes. On the return flight, the distance is traveled in 3 hours. Find the airspeed of the plane and the speed of the wind, assuming that both remain constant.
Solve the system by the method of substitution: -x + 2y = 2 3x + y = 15
Write the first five terms of the sequence. Assume that n begins with 1.
Use the Binomial Theorem to expand and simplify the expression. (y - 4)3
The x’y’-coordinate system has been rotated θ degrees from the xy-coordinate system. The coordinates of a point in the xy-coordinate system are given. Find the coordinates of the point in the rotated coordinate system. a.Θ = 90o, (0, 3)
Write the expression as the sine, cosine, or tangent of an angle. sin 3 cos 1.2 - cos 3 sin 1.2
Choose an expression for the apparent nth term of the sequence. Assume that n begins with 1.
An orbit of a satellite around a planet is an ellipse, with the planet at one focus of this ellipse. The distance of the satellite from this star varies from 300,000 km to 500,000 km, attained when the satellite is at each of the two vertices. Find the equation of this ellipse, if its center is at the origin, and the vertices are on the x-axis. Assume all units are in 100,000 km.
Solve the system by the method of elimination and check any solutions algebraically.
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. x2+y2−6x+4y+9=0
A truck that is about to pass through the tunnel from the previous item is 10 ft wide and 8.3 ft high. Will this truck be able to pass through the tunnel?
Find the specified nth term in the expansion of the binomial.
Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. 2cos2+cosx=1
Find the exact value of the cosine of the angle by using a sum or difference formula.
Use the Binomial Theorem to approximate the quantity accurate to three decimal places.
Give the coordinates (enclose the coordinates in parentheses) of the foci, vertices, and covertices of the ellipse with equation .
Convert the angle in radians to degrees. Round to two decimal places. -3.97 radians
Solve the system by the method of substitution.
First six terms:
Solve each equation for exact solutions over the interval [00, 3600]. ( (tan theta - 1)( costheta - 1) = 0 )
Find the standard equation of the ellipse which satisfies the given conditions.
Find a polar equation of the conic with its focus at the pole.
Expand the binomial by using Pascal's Triangle to determine the coefficients. (x - 2y)5
Find the standard form of the equation of the ellipse with the given characteristics: Vertices: (0, 4), (4, 4); minor axis of length 2
Find the standard form of the equation of the parabola with the given characteristics: Vertex: (0, 4); directrix: y = 2
Convert the rectangular equation to polar form. Assume a > 0. 3x - y + 2 = 0
Find the exact value of the trigonometric function given that sin u=−725
Solve the equation for exact solutions over the interval [0, 2π]. sin 3x = 0
What kind of symmetry does a circle have?
First differences:
Solve the equation for exact solutions over the interval [0, 2π]. (cos2x = -frac{1}{2} )
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 4x2−y2−4x−3=0
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (large 25x^2-10x-200y-119=0)
Find the standard equation of the hyperbola which satisfies the given condition:
Find the exact value of the tangent of the angle by using a sum or difference formula. -165°
Solve each equation for exact solutions over the interval [00, 3600]. (tanθ−1)(cosθ−1)=0
Convert the polar equation to rectangular form. r = 62−3sinθ
Solve the equation for exact solutions over the interval [0, 2π]. cot3x=3–√
Find the standard equation of the parabola which satisfies the given condition:
Solve each equation for exact solutions over the interval [00, 3600]. ((cottheta - sqrt{3})(2sintheta + sqrt{3}) = 0)
Use the Binomial Theorem to expand and simplify the expression. (x2/3 - y1/3)3
Find the exact value of each expression.
A type of Conic where the plane is tilted and intersects only on one cone to form a bounded curve.
The shape of this conic section is a bounded curve which looks like a flattened circle.
Find the sum using the formulas for the sums of powers of integers.
Find the standard form of the equation of the parabola with the given characteristics: Vertex: (5, 2); focus: (3, 2)
Give the coordinates of the center, foci, and covertices of the ellipse with equation 41x2 + 16y2 + 246x - 192y + 289 = 0. Only vertices are given. Enclose the coordinates in parentheses. For example, (6, 4)
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large 4x^2+3y^2+8x-24y+51 =0 )
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes.
Find a quadratic model for the sequence with the indicated terms.
What are the coordinates of the figure below: A
What is the quadrant or axis on which the point is located? (-10, -16)
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes. b. xy – 2y – 4x = 0
Using the equation for the circle find its radius: x2 + y2 + 6x + 2y + 6 = 0.
Solve the system by the method of elimination and check any solutions algebraically.X + 2y = 4 X – 2y = 1
Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. (2 cos^2 + cos x =1)
Solve the equation for exact solutions over the interval [0, 2π]. 2–√cos2x=−1
A whispering gallery has a semielliptical ceiling that is 9 m high and 30 m long. How high is the ceiling above the two foci?
What is the standard form of the equation of the circle x2 + y2 + 10x - 4y - 7 = 0?
Convert the polar equation to rectangular form. r=4cscθ
What Quadrant does 294° belongs to?
A parabola has focus F(-2, -5) and directrix x = 6. Find the standard equation of the parabola.
What is the standard form of the equation of the circle x2 + 14x + y2 - 6y - 23 = 0?
Determine the quadrant in which the angle lies. 349°
Solve the equation for exact solutions over the interval [0, 2π]. 3tan3x=3–√
What is the quadrant or axis on which the point is located? (7,7)
Solve the system by the method of substitution. Check your solution graphically. -2x + y = -5 X2 + y2 = 25
What is the quadrant or axis on which the point is located? (13, -14)
Give the coordinates (enclose the coordinates in parentheses) of the foci, vertices, and covertices of the ellipse with equation
Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. x2−4x−8y+2=0
Use the Binomial Theorem to expand and simplify the expression. 2(x - 3)4 + 5(x - 3)2
Solve the equation for exact solutions over the interval [0, 2π]. tan 4x = 0
Find the standard form of the equation of the ellipse with the given characteristics: Vertices: (0, 2), (4, 2); endpoints of the minor axis: (2, 3), (2, 1)
Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form.
Use the Binomial Theorem to expand and simplify the expression.
Expand the binomial by using Pascal’s Triangle to determine the coefficients. (x + 2y)5
Use the Binomial Theorem to expand and simplify the expression. 2(x - 3)5 + 5(x - 3)2
Solve the system by the method of elimination and check any solutions algebraically. 3x + 2y = 10 2x + 5y = 3
Give all exact solutions over the interval [00, 3600].
What does r refer to in the following equation? (x-h)2+(y-k)2=r
r=21−cosθ
What is the quadrant or axis on which the point is located? (-15, 0)
Use the Binomial Theorem to expand and simplify the expression. (x2 + y2)4
Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes. a. x2 – 2xy + y2 – 1 = 0
Convert the polar equation to rectangular form. (theta = frac{2pi}{3} )
A structure of ellipse that have the origin as their centers.
The term _________ is both used to refer to a segment from center C to a point P on the circle, and the length of this segment.
Solve the equation for exact solutions over the interval [0, 2π]. sinx2=2–√−sinx2
A point in polar coordinates is given. Convert the point to rectangular coordinates.
Two control towers are located at points Q(-500, 0) and R(500, 0), on a straight shore where the x-axis runs through (all distances are in meters). At the same moment, both towers sent a radio signal to a ship out at sea, each traveling at 300 m/µs. The ship received the signal from Q 3 µs (microseconds) before the message from R.
Find the standard form of the equation of the ellipse with the given characteristics: Center: (0, 4), a = 2c; vertices:
Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form. 5x2 – 6xy + 5y2 – 12 = 0
To keep up this site, we need your assistance. A little gift will help us alot.
Donate- The more you give the more you receive.
Related SubjectCalculus
Finance Market
Special Topics in Financial Management
Mathematics
Star Wars: Skeleton Crew
Engineering
Basic Adult Education
Quantitative Methods
Physics For Engineers
Operations Auditing
Numerical Methods
Mathematics in the Modern World
Discrete Structures
Discrete Structures 2
Discrete Mathematics
Data Analysis
Calculus-Based Physics
Biostatistics
Calculus-Based Physics 2
Shopee Cashback Voucher
Temu $0 Shipping Fee
Amazon 75% Off Discounts